LETTER OF TRANSMITTAL

515

Contracts Administrator

Barry Doherty, PM

то

LETTER OF TRANSMITTAL

DATE: 9/19/2018

PROJECT: UC HASTINGS

ATTENTION TO:

BARRY DOHERTY ROEBUCK CONSTRUCTION 415-255-1506

SUBMITTED BY:

MATT BEIER PERMANENT INSTALLATIONS ENGINEER – SKY CLIMBER, I 1800 PITTSBURGH DRIVE DELAWARE, OH 43015 740-203-3925

	A	RCH. L(OG No. 17013 - SU 009)B	
RESUBMIT FOR REVIEW		Resubmit Or review	THIS SUBMITTLE HAS BEEN CHECKED ONLY FOR CONFORMANCE WITH THE DESIGN CONCEPT OF THE PROJECT AND COMPLANCE WITH THE INFORMATION GVEN IN THE CONSTRUCTION DOCUMENTS. THE CHECKING OF THIS SUBMITLY SILVED THE CONTRACTOR FROM THE REAMONS BILITY FOR DEVIATIONS FROM THE REAMONS OR SPECIFICATIONS UNLESS HE HAS IN WRITING CALLED THE ARCHITECTS.		REVIEW OMPLETED
	X REVISE ANDIOR CORRECT				NO CORRECTIONS NOTED
		REJECTED	ATTENTION TO SOLCH DEVIATIONS AND SECURED HIS WRITTEN APPROVAL. TO SHALL IT RELEVE HIM PROM THE RESPONSIBILITY FOR ERRORS ON THIS SUBMITTAL.		MAKE CORRECTIONS NOTED
	DATE 10/8/18		McGINNIS CHEN ASSOCIATES, INC. 1019 MISSION STREET SAN FRANCISCO, CA 94103 415-986-3873	BYW	hom R
ſ	DATE			BYW	HOM

ENCLOSED:

COPIES	DWG NO.	REV.	DESCRIPTION
1	SCL 1.0	С	ROOF EQUIPMENT LAYOUT
1	SCL 2.0	В	DAVIT DETAIL
1	SCL 2.1	А	DAVIT ASSEMBLY DETAILS
1	SCL 3.0	Α	DAVIT BASE WELD CALCULATIONS
1	N/A	А	DAVIT MOBILE SOCKET CALCULATIONS
1	N/A	Α	ROOF RIGGED DAVIT ARM CALCULATIONS

SUBMITTAL STATUS:

☑ FOR APPROVAL

□ FOR RECORD ONLY

PLEASE PROVIDE A RESPONSE TO THIS SUBMITTAL ON OR BEFORE 9/25/2018.

Per MCA Stamp - Revise					
and Resubmit					
RE	VII				
NO CORRECTIONS NOTED		CORRECTIONS NOTED	Х		
REVISE AND RESUBMIT		REJECTED			
BY RJH		date 10/8/18			
THIS IS A GENERAL REVIEW ONLY, FOR (SPECIFICATIONS, AND DOES NOT CONST QUANTITIES, MATERIALS OR FABRICATIC THE CONTRACTOR, SUB-CONTRACTOR (OF THE PLANS AND SPECIFICATIONS, AN HELD RESPONSIBLE FOR ANY ERRORS (THE B A GENERAL RENEW ONLY FOR COMPLANCE WITH THE PLANES AND PERCIFICATION INS. AND DOES NOT CONTENTIFE A DETAILED OHERCY OF MAINTENDS, DIANTITIES INSTEMALS OF FARENCATION INFOCESSES, THE RENEW SHALL HOT RELEVE THE CONTRACTOR, SUB-CONTRACTOR OR VEDDOR FROM CONFORMING WITH ALL ASPECTS OF THE PLANES AND SPECIFICATIONS, AND NEITHER THE ENGINEER NOR OWNER SHALL BE HELD RESPONSIBLE FOR ANY RENEWS OF OMISSIONS BY REASON OF THIS RENEW HELD RESPONSIBLE FOR ANY RENEWS OF OMISSIONS BY REASON OF THIS RENEW				
JYASF, INC.					
STRUCTURAL ENGINEERS					
1 KAISER PLAZ	A, SU	ITE 405, OAKLAND, CA			

SRS Safety Se	rvices Inc.	SR
REVIEWED		SRS SAFETY SERVICES
REVIEWED AS	S NOTED	Seronosa i OSPA Comunica
REVISE AND I	RESUBMIT	
REJECTED		
FOR INFORM	ATION ONLY	
This submittal has been r contract requirements on conforming to and correle a, construction methods a trades. This review does responsibilities to comply	eviewed for general of ly. The subcontractor sting all quantities, din and coordination of the not relieve the subcor- with the contract obli-	onformance with the is responsible for rensions, fabrication is work with all other stractor of their gations and

1800 PITTSBURGH DRIVE, DELAWARE, OHIO 43015 TOLL FREE: 800-255-4629, DIRECT TEL: 740-203-3900, FAX: 740-203-3901 EMAIL: info@skyclimber.com

www.skyclimber.com

- 🥥 🔘 1,250# WORKING LOAD 5,000# MAX ULTIMATE LOAD

SYMBOLS LEGEND

800.255.4629 Ph: 740.203.3900 Fax: 740.203.390 mail: info@skvclimber.com Web: www.skvclimber.com

PROJECT

UC HASTINGS SAN FRANCISCO, CA

SHEET TITLE

DAVIT ASSEMBLY DETAILS

REVISIONS				
REV. A	DESCRIPTION INITIAL RELEASE		DATE 9-19-18	REV. BY MB
				- <u> </u>
ATE:	9-19-18	DRAWN BY:	MB	
CALE:		CHECKED BY:		
ROJECT #:				
HEET #:		REVISION #:	٨	

5
426 in ²
psi
ad psi
า.)
ated. The al details

Sky Climber®, LLC 1800 Pittsburgh Drive, Delaware, OH 43015 Toll Free: 800.255.4629 Ph: 740.203.3900 Fax: 740.203.3901 E-mail: info@skyclimber.com Web: www.skyclimber.com

PROJECT

SHEET TITLE

SYMBOLS LEGEND

UC HASTINGS SAN FRANCISCO, CA

DAVIT BASE WELD CALCULATIONS

ISIONS				
EV.	DESCRIPTION		DATE	REV. BY
А	INITIAL RELEASE		3-6-18	NK
				·
				·
E:	<i>(</i>)	DRAWN BY:		
	3-6-18		NK	
.E:		CHECKED BY:		
ECT #:		I		
T #:		REVISION #:		
	SCL 3.0		А	

SKY CLIMBER CALCULATION PACKAGE

PROJECT:	PI Sockets
ENGINEER:	Nick Slee
DATE:	8-Jun-18
DESCRIPTION:	Davit Socket Base, Mobile, 1250# Capacity
DRAWING NO:	DVT-SB-MOB
SPECS:	1250 lb. Capacity

SKY CLIMBER®, LLC 1800 Pittsburgh Drive Delaware, OH 43015 USA Toll Free: 800.255.4629 Ph: 740.203.3900 Fax: 740.203.3901 E-mall: Info@skyc mber.com Web: www.skyclimber.com

170526

	<u>Porta</u>	<u>ble Socket</u>				
Loading Conditions				ASTM A500 Grade B Steel		
d	=	10.25 (in)	Davit pin spacing	E	=	29000 (ksi
M_{max}	=	520625 (in-lbs)	maximum moment from davit	F_{tu}	=	60 (ksi
T_{pin}	=	50793 (lbs)	Load on pin	F_{ty}, F_{cy}	=	46 (ksi
				К	=	1 (-)
	Calc	<u>culations</u>				
	AISC	Table J3.4	Base/Socket Pin Hole Edge Distance			
d_{pin}	=	1.250 (in)	Diameter of pin			

•	
L_{edge}	
L _c	

=

=

1.63 (in) 1.63 (in)

PASS

Minimum Required Edge Distance

Actual Edge Distance

AISC Section J3.10

t R_n 0.625 (in) = 91406 (lbs) = $\mathsf{R}_{\mathsf{max}}$ 25396 (lbs) = R_{max} < R_n PASS

L_c >= L_{edge}

Base/Davit Pin Hole Bearing/Tearout Strength _...

Plate Thickness
Eqn. J3-6b
$[T_{pin}/2]$, Pin is in double shear

AISC Section J2 0.5 (in) h = 12 (in) d = 203.6 (in³) Т = 15.3 (ksi) τ = 34.6 (ksi) τ_{allow} = PASS T < T_{allow}

Weld Strength

	Socket Pin- 1.25" Round Bar				
	Section Properties				
\mathbf{d}_{pin}	=	1.25 (in)			
А	=	1.227 (in ²)			
I	=	0.120 (in ⁴)			
S	=	0.192 (in ³)			
Z	=	0.326 (in ³)			
	Loadin	q Conditions			

		-
а	=	0.250 (in)
d	=	10.25 (in)
M_{max}	=	520625 (in-lbs)
T _{pin}	=	50793 (lbs)
M_{max}	=	6349 (in-lbs)
$\sigma_{\text{b, max}}$	=	33.1 (ksi)

Distance between support and load
pin spacing
maximum moment from davit
Resolved moment on pin
maximum bending moment on pin
bending stress on pin

416 Stainless Steel Properties

F _{tu}	=	70 (ksi)	-
F_{ty}, F_{cy}	=	40 (ksi)	-
F_{sy}	=	24 (ksi)	-

Two equal concentrated loads P equi-distant from the center

Reactions:	R_{\perp}	-	R_{\odot}	-	į

Maximum shear forces: $V_1 = +P$; $V_2 = -P$

$\begin{array}{l} \text{Maximum bending moment:} \\ M_{max} = Pa, \text{between loads} \\ \text{Maximum deflection} & = \frac{Pa}{Pa} (3L^2 - 4a^2) \\ \text{def.} & = \frac{Pa}{6EI} (3La - 3a^2 - x^3), \ o \leq x \leq a \\ & = \frac{Pa}{6EI} (3Lx - 3x^2 - a^2), \ a \leq x \leq (L-a) \end{array}$

	<u>Calcu</u>	<u>lations</u>	
	AISC Sec	tion F11.1	Flexural Strength to Yield
M ₁	=	13021 (in-lbs)	
M ₂	=	11505 (in-lbs)	
M _n	=	11505 (in-lbs)	
	M _{max} <	M _n PASS	

	AISC Section G.4		
V	=	25396 (lbs)	
V_n	=	29452 (lbs)	
	$V < V_n$	PASS	

Elements- Shear pin in double shear Max allowable shear load

SKY CLIMBER CALCULATION PACKAGE

PROJECT:	PI Davits
ENGINEER:	Nick Slee
DATE:	21-Apr-17
DESCRIPTION:	Davit 2.0, 12' Tall, 8.5' OR
DRAWING NO:	DVT-RR-8-HD-2.0
SPECS:	1250# Capacity, 8.5' Outreach, 12' Tall

SKY CLIMBER®, LLC 1800 Pittsburgh Drive Delaware, OH 43015 USA To Free: 800,255,4629 Ph: 740.203.3900 Fax: 740.203.3901 E-mainfo@skycimber.com Web: www.skycimber.com

NOTE: DAVIT IS CAPABLE OF SUPPORTING 5,000 LB, ULTIMATE LOAD AND 1,250 LB, ALLOWABLE LOAD, DAVIT MAY FAIL DUE TO IMPROPER INSTALLATION OR INADEQUATE SUPPORTING STRUCTURE, SERIOUS INJURY OR DEATH MAY RESULT FROM DAVIT FAILURE, INSTALLATION OF DAVIT MUST BE PERFORMED UNDER THE SUPERVISION OF A PROFESSIONAL ENGINEER WITH EXPERIVISION OF SUSPENDED ACCESS EQUIPMENT, ADDITIONALLY, DAVIT SHALL BE TESTED UNDER THE SUPERVISION OF A P.E. AND CERTIFIED BEFORE PLACING INTO SERVICE.

SPECIFIC CONSTRUCTION DETAILS AND APPLICATIONS VARY. THE STRUCTURE THE DAWT BASE IS ATTACHED TO MUST BE ADEQUATE TO SUPPORT THE REQURED LOADING, THEREFORE, ALL INSTALLATION DETAILS MUST BE CONFIRMED BY THE BUILDING'S ENGINEER OF RECORD PRIOR TO THE INSTALLATION.

170526

 $R_2 = \frac{P}{T} \left(L + a \right)$ Pa

Maximum downward def. = $\frac{Pa^2}{3 El} (L + a)$, at load

Maximum upward deflection; at $x = \frac{L}{\sqrt{3}}$ = $\frac{PaL^2}{9\sqrt{3}EI} = 0.06415 \frac{PaL^2}{EI}$

Shear forces: $V_1 =$ $V_{2} = P$ Maximum bending moment: $M_{max} = -Pa$, at right support

Deflections:

6061-T6 Aluminum Properties

E	=	10100 (ksi)	- Table A.3.4
F _{tu}	=	38 (ksi)	- Table A.3.4
F_{ty},F_{cy}	=	35 (ksi)	- Table A.3.4
k _t	=	1 (-)	- Table A.3.3
F_{sy}	=	21 (ksi)	-

Loading	Conditio	ons
=	26.625	(in)
=	77.5	(in)
=	1250	(lbs)
=	4	(-)
=	133125	(in-lbs
=	17.381	(ksi)
	Loading = = = = = =	Loading Condition = 26.625 = 77.5 = 1250 = 4 = 133125 = 17.381

onditions	CASE 20.
6.625 (in)	X
77.5 (in)	R ₁
1250 (lbs)	·
4 (-)	Vi 🕶
33125 (in-lbs)	
7.381 (ksi)	

	ADM Section F.2		
M ₁	=	319970	(in-lbs)
M ₂	=	402105	(in-lbs)
M ₃	=	380530	(in-lbs)
M _{np}	=	319970	(in-lbs)
	M _n	_{nax} < M _{np}	PASS

Calculations

ADM Section J.3.6 0.75 (in)

D =

Bearing Strength at Bolt Diameter of Bolt

t.w	=	0.250 (in)	Thickness of beam
" d	=	3 000 (in)	bolt edge distance
R.	=	28500 (lbs)	13-4 Equation- Bearing Strength
R .	_	28500 (lbs)	L2 4 Equation Edge Distance
	-	26500 (IDS)	J.3-4 Equation-Edge Distance
P _{pin}	=	6718 (lbs)	
	P pin	< R _n PAS	
	ADM	Section G.2	Elements- Shear
Bs	=	27.2 (ksi)	Table 1-1
D_{s}	=	0.141 (ksi)	Table 1-1
λ1	=	35	
b/t	=	22	
Fs	=	21 (ksi)	b/t<λ ₁
F_{so}	=	1.46 (ksi)	F _{so} =V _{max} /A=R ₂ /A
	Fee	< F _a PAS	S
	30		
	ADM S	ection B.5.4.2	Elements- Uniform Compression
b/t	ADM S =	ection B.5.4.2 22 (-)	Elements- Uniform Compression
b/t B _p	ADM S = =	ection B.5.4.2 22 (-) 45 (ksi)	Elements- Uniform Compression
b/t B _p D _p	ADM S = = =	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi)	Elements- Uniform Compression Table 1-1 Table 1-1
b/t B _p D _p λ ₁	ADM S = = = =	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi) 20.83 (-)	Elements- Uniform Compression Table 1-1 Table 1-1
b/t B _p D _p λ ₁	ADM S = = = = =	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi) 20.83 (-) 32.81 (-)	Elements- Uniform Compression Table 1-1 Table 1-1
b/t B _p D _p λ ₁ λ ₂ k ₁	ADM S = = = = = = =	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi) 20.83 (-) 32.81 (-) 0.35 (-)	Elements- Uniform Compression Table 1-1 Table 1-1 Table B.4.3
b/t B _p D _p λ ₁ λ ₂ k ₁ F _c	ADM S = = = = = = = = =	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi) 20.83 (-) 32.81 (-) 0.35 (-) 34.44 (ksi)	Elements- Uniform Compression Table 1-1 Table 1-1 Table B.4.3 $\lambda_1 < b/t < \lambda_2$
b/t B _p D _p λ_1 λ_2 k ₁ F _c	ADM S = = = = = = = σ _{b,r}	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi) 20.83 (-) 32.81 (-) 0.35 (-) 34.44 (ksi) max < F _c PAS	Elements- Uniform Compression Table 1-1 Table 1-1 Table B.4.3 $\lambda_1 < b/t < \lambda_2$
b/t B_p D_p $λ_1$ $λ_2$ k_1 F_c	ADM S = = = = = = = σ _{b,r}	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi) 20.83 (-) 32.81 (-) 0.35 (-) 34.44 (ksi) nax < F _c PAS	Elements- Uniform Compression Table 1-1 Table 1-1 Table B.4.3 $\lambda_1 < b/t < \lambda_2$
b/t B _p D _p λ_1 λ_2 k_1 F_c	ADM S = = = = = σ _{b, r}	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi) 20.83 (-) 32.81 (-) 0.35 (-) 34.44 (ksi) nax < F _c PASS	Elements- Uniform Compression Table 1-1 Table 1-1 Table B.4.3 $\lambda_1 < b/t < \lambda_2$ Elements- Flexural Compression
b/t B_p D_p λ_1 λ_2 k_1 F_c b/t B_i	ADM S = = = = = σ _{b,r} ADM S = =	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi) 20.83 (-) 32.81 (-) 0.35 (-) 34.44 (ksi) max < F _c PASS ection B.5.5.1 22 (-) 66 % (kci)	Elements- Uniform Compression Table 1-1 Table 1-1 Table B.4.3 $\lambda_1 < b/t < \lambda_2$ Elements- Flexural Compression Table 1.1
b/t B _p D _p λ ₁ λ ₂ k ₁ F _c b/t	ADM S = = = = = σ _{b,r} ADM S = =	ection B.5.4.2 22 (-) 45 (ksi) 0.3 (ksi) 20.83 (-) 32.81 (-) 0.35 (-) 34.44 (ksi) max < F _c PASS ection B.5.5.1 22 (-) 66.8 (ksi)	Elements- Uniform Compression Table 1-1 Table 1-1 Table B.4.3 $\lambda_1 < b/t < \lambda_2$ S Elements- Flexural Compression Table 1-1 Table 1-1

c _o /c _c	=	-1 (-)	
m	=	0.65 (-)	-c _o =c _c
λ ₁	=	33.03 (-)	
λ ₂	=	54.01 (-)	
k ₁	=	0.35 (-)	Table B.4.3
F_{b}	=	52.5 (ksi)	$b/t < \lambda_1$
	σ_{b, n}	_{nax} < F _b PASS	
	ADM	Section F.4	Lateral Torsional Buckling
C _b	=	1.3 (-)	Section F.4.1
λ	=	8.8 (-)	Section F.4.2.3
C _c	=	66.0 (-)	Table 1-1
M _{nmb}	=	300577 (in-lbs)	$\lambda < C_c$

	Mast: 8" SC	H 40 Pipe			6061-T	6 Alum	inum Propertie	S
	Section Pr	operties			E	=	10100 (ksi)	- Table A.3.4
А	=	8.400 (in ²)			F _{tu}	=	38 (ksi)	- Table A.3.4
d _{y,bolt}	=	18.000 (in)	mast bolt spacing		F_{ty},F_{cy}	=	35 (ksi)	- Table A.3.4
$d_{y,pin}$	=	10.250 (in)	mast pin spacing on adapter	plate	k _t	=	1 (-)	- Table A.3.3
OD	=	8.625 (in)	Pipe OD					
L_{pipe}	=	66.000 (in)						
r	=	2.940 (in)						
lx,ly	=	72.500 (in ⁴)						
S	=	16.812 (in ³)						
Z	=	22.210 (in ³)						
t	=	0.322 (in)						
R _b /t	=	12.9 (in)						
	Loading Co	onditions						
а	=	26.625 (in)		CASE 14.			P Concentrated load, P.	at free end of cantilever beam
L	=	77.5 (in)		1/A		X -		ford and
Р	=	1250 (lbs)		R	L		Reaction: $R = P$, at Shear force $V = -P$	
F.O.S.	=	4 (-)	4:1 Required F.O.S.	v			Maximum bending me	$b \leq x \leq L$ b = -PL, x = L
R	=	5000 (IDS)					Bending moment: M =	$= -Px, o \leq x \leq L$
IVI _{max}	=	520625 (IN-IDS)					Maximum deflection =	$\frac{PL^3}{3 EI}$, at free end, $x = o$
l _{bolt}	=	14516 (lbs)	Load on adapter plate bolts	Mm	ox.	def	def. = $\frac{P}{6EI}$ (2L ³ -	$3L^2x + x^3), o \le x \le L$
T _{pin}	=	25427 (lbs)	Load on davit pins	2				
$\sigma_{\text{b, max}}$	=	30.97 (ksi)						
	<u>Calcula</u>	ations						
	ADM Sec	tion F.2	Flexural Strength to Yield					
M_1	=	777341 (in-lbs)						
M_2	=	882609 (in-lbs)						

 M_3

 \mathbf{M}_{np}

882609 (in-lbs)

777341 (in-lbs)

=

=

M_{max} < M_{np} PASS

ADM Section B.5.4.5			Elements- Uniform Compression		
R _b /t	=	12.9 (-)			
B _t	=	43.2 (ksi)	Table 1-1		
Ct	=	141 (-)	Table 1-1		
Dt	=	1.558 (ksi)	Table 1-1		
λ ₁	=	27.70 (-)			
F _c	=	35 (ksi)	$R_{b}/t < \lambda_{1}$		
	σ _{b. m}	_{ax} < F _c PASS			

	ADM Section	B.5.5.4	Elements- Flexural Compression
R₀/t	=	12.9 (-)	
B _{tb}	=	64.8 (ksi)	Table 1-1
C _{tb}	=	55.4 (-)	Table 1-1
D _{tb}	=	4.46 (ksi)	Table 1-1
λ ₁	=	55.40 (-)	
F _b	=	48.79 (ksi)	$R_{b}/t < \lambda_{1}$
	<mark>σ_{b, ma}</mark>	_x < F _b PASS	

	ADM Sect	Member Bucklin	g	
λ	=	22.4 (-)		
B _c	=	39.4 (ksi)	Table 1-1	
D _c	=	0.246 (ksi)	Table 1-1	
λ ₁	=	17.89 (-)		
λ ₂	=	66.00 (-)	$\lambda_2 = C_c$	
F _c	=	33.40 (ksi)	$\lambda_1 < \lambda < \lambda_2$	
P _{nc}	=	280523 (lbs)		
	R <	P _{nc} PASS		

AD	M Section	n H.1	Combined Flexure and Axial Forces
P _R /P _C	=	0.018 (-)	
M_R/M_C	=	0.670 (-)	Table 1-1
$P_R/P_C + M_R/M_C$	=	0.688 (-)	Table 1-1
	P _R / M⊳/M	P _c + I _{c<1.0} PASS	

ADM Section J.3.6				Bearing Strength at Mast Bolt
D	=	1 (ir	ר)	Diameter of Bolt
t	=	0.322 (ir	ר)	Thickness of mast wall
d _e	=	2.125 (ir	ר)	bolt edge distance
R _n	=	24472 (lb	os)	J.3-4 Equation- Bearing Strength
R _n	=	26002 (lb	os)	J.3-4 Equation-Edge Distance
T _{bolt}	=	14516 (lb	os)	
	T _{bolt}	t < R _n P/	ASS	

ADM Section J.3.6								
D =	1.25	(in)						
t =	0.375	(in)						
d _e =	1.875	(in)						
R _n =	35625	(lbs)						
R _n =	26719	(lbs)						
T _{pin} =	25427	(lbs)						
	T _{pin} < R _n	PASS						

Bearing Strength at Davit Pin (Adapter Plate) Diameter of Pin

1.20 (11)	
0.375 (in)	Thickness of adapter plate
1.875 (in)	Pin edge distance
35625 (lbs)	J.3-4 Equation- Bearing Strength
26719 (lbs)	J.3-4 Equation-Edge Distance
25427 (lbs)	

	AISC Section	J3.6	Bolt Shear Strength
tpi	=	8.00 (-)	threads per inch
A _b	=	0.61 (in^2)	nominal unthreaded body area of bolt
F _n	=	70 (ksi)	bolt tensile strength
F_{nv}	=	42 (ksi)	bolt shear strength (60% of bolt tensile strength)

R _n	=	25441	(lbs)	Eqn. J3-1
	T _{bolt} <	R _n	PASS	

	Brace: 2" X 2	<u>" X .125" Tube</u>			
	Section Properties				
b	=	2 (in)			
t	=	0.125 (in)			
А	=	0.840 (in ²)			
I	=	0.486 (in ⁴)			
S	=	0.486 (in ³)			
r	=	0.761 (in)			

Loading Conditions

а	=	26.625 (in)
L	=	77.5 (in)
L _c	=	72.125 (in)
Р	=	1250 (lbs)
F.O.S.	-	4 (-)
R_2	=	6718 (lbs)
Θ	=	21 (deg)
Р	=	18745 (lbs)
$\sigma_{c,max}$	=	22.32 (ksi)

Calculations AISC Section J3.5 d_{bolt} 0.75 (in) = 1.00 (in) L_{edge} = 1.4375 (in) L_{act} = L_{edge} < L_{act} PASS

Bolt Hole Edge Dista	ance
Diameter of bolt	
Minimum Required Ed	dge Distance
Actual Edge Distance	!

Length of brace

AISC Section J3.10			
I _c	=	1.0469 (in)	
t	=	0.125 (in)	
d_{bolt}	=	0.75 (in)	

Bolt Hole Bearing and Tearout Strength

CASE 20.

Upper Plate Thickness Diameter of bolt

	A500 Gr B	Propert	ies
E	=	29000	(ksi)
F_{tu}	=	58	(ksi)
F _{tv} , F _c	=	45.7	(ksi)

· · ·	0,		-	`
k _t		=	1	(-)

R _n	=	11385	(lbs)	Eqn. J3-6b
R_{max}	=	9373	(lbs)	[P/2], Bolt is in double shear
	R _n	_{nax} < R _n	PASS	
	AISC S	ection J3	.6	Bolt Shear Strength
tpi	=	10.00	(-)	threads per inch
A _b	=	0.33	(in^2)	nominal unthreaded body area of bolt
F _n	=	70	(ksi)	bolt tensile strength
F_{nv}	=	42	(ksi)	bolt shear strength (60% of bolt tensile strength)
R_n	=	14047	(lbs)	Eqn. J3-1
	R _m	_{lax} < R _n	PASS	Bolt in double shear

	AISC	Section E3	Member Buckling
KL/r	=	94.8 (-)	
F_{e}	=	31.833 (ksi)	Table 1-1
F_y/F_e	=	1.4 (-)	Table 1-1
F_{cr}	=	27.92 (ksi)	F _y /F _e <2.25
Pn	=	33236 (lbs)	
	R	< P _n PASS	

	AISC Table B4.1a	Width to Thickness Ratios
b/t	= 16.0 (-)	
λ	= 35.27 (-)	
F_{c}	= 46 (ksi)	$b/t < \lambda_1$
	σ _{c, max} < F _c PASS	

<u>Sł</u>	naft: 0	.75" Round Bar		
	Section Properties			
D	=	0.750 (in)		
А	=	0.442 (in ²)		
I	=	0.016 (in ⁴)		
Loading	C =	0.041 (in ³)		
L	=	0.636 (in)		

Loading Conditions/Calcs

		$\sigma_{c, max} < F_{tv}$	PASS
$\sigma_{c,max}$	=	53.5	(ksi)
M_{max}	=	2215	(in-lbs)
FOS	=	4	(-)
Р	=	1250	(lbs)

Plate: 0.5" plate Section Properties

Section	rioperties	
=	0.5 (in)

t 0.75 (in) d = I_{c} 0.742 (in) =

	Loading Con	ditions/Calcs	
Ρ	=	5000 (lbs)	
R_n	=	46802 (lbs)	AISC Section J
	<mark>P < F</mark>	R _n PASS	

Bar: 316 SS (Annealed, cold drawn bar)

Ε	=	28000 (ksi)
F _{tu}	=	89.9 (ksi)
F _{ty} , F _{cy}	=	60.2 (ksi)

Plate: 316L SS (Annealed)

Е	=	28000 (ksi)
F_{tu}	=	84.1 (ksi)
F_{ty}	=	42.1 (ksi)

Da		416SS Properties					
Section Properties				F_{y}	=	40 (ksi)	Yield Strength
D	=	1.250 (in)		F_s	=	24 (ksi)	Shear Strength
$d_{y,pin}$	=	10.250 (in)	mast pin spacing on adapter plate				
	Loading Co	onditions					
а	=	26.625 (in)					
L	=	77.5 (in)					
Р	=	1250 (lbs)					
F.O.S.	=	4 (-)	4:1 Required F.O.S.				
M_{max}	=	520625 (in-lbs)					
T_{pin}	=	25427 (lbs)	Load on davit pins				
Calculations							
	AISC Section J3.6		Pin Shear Strength				
A _b	=	1.23 (in^2)	Area of pin				
R _n	=	29452 (lbs)	Eqn. J3-1				

T_{pin} < R_n

PASS